Characterization of (c)-Riordan Arrays, Gegenbauer-Humbert-type polynomial sequences, and (c)-Bell polynomials
نویسندگان
چکیده
Here presented are the definitions of (c)-Riordan arrays and (c)-Bell polynomials which are extensions of the classical Riordan arrays and Bell polynomials. The characterization of (c)-Riordan arrays by means of the Aand Z-sequences is given, which corresponds to a horizontal construction of a (c)Riordan array rather than its definition approach through column generating functions. There exists a one-to-one correspondence between Gegenbauer-Humbert-type polynomial sequences and the set of (c)Riordan arrays, which generates the sequence characterization of Gegenbauer-Humbert-type polynomial sequences. The sequence characterization is applied to construct readily a (c)-Riordan array. In addition, subgrouping of (c)-Riordan arrays by using the characterizations is discussed. The (c)-Bell polynomials and its identities by means of convolution families are also studied. Finally, the characterization of (c)-Riordan arrays in terms of the convolution families and (c)-Bell polynomials is presented.
منابع مشابه
Generalized Riordan arrays
In this paper, we generalize the concept of Riordan array. A generalized Riordan array with respect to cn is an infinite, lower triangular array determined by the pair (g(t), f(t)) and has the generic element dn,k = [t/cn]g(t)(f(t))/ck, where cn is a fixed sequence of non-zero constants with c0 = 1. We demonstrate that the generalized Riordan arrays have similar properties to those of the class...
متن کاملIdentities on Bell polynomials and Sheffer sequences
In this paper, we study exponential partial Bell polynomials and Sheffer sequences. Two new characterizations of Sheffer sequences are presented, which indicate the relations between Sheffer sequences and Riordan arrays. Several general identities involving Bell polynomials and Sheffer sequences are established, which reduce to some elegant identities for associated sequences and cross sequences.
متن کاملMeixner-Type Results for Riordan Arrays and Associated Integer Sequences
We determine which (ordinary) Riordan arrays are the coefficient arrays of a family of orthogonal polynomials. In so doing, we are led to introduce a family of polynomials, which includes the Boubaker polynomials, and a scaled version of the Chebyshev polynomials, using the techniques of Riordan arrays. We classify these polynomials in terms of the Chebyshev polynomials of the first and second ...
متن کاملThe Characterization of Riordan Arrays and Sheffer-type Polynomial Sequences
Here we present a characterization of Sheffer-type polynomial sequences based on the isomorphism between the Riordan group and Sheffer group and the sequence characterization of Riordan arrays. We also give several alternative forms of the characterization of the Riordan group, Sheffer group and their subgroups. Formulas for the computation of the generating functions of Riordan arrays and Shef...
متن کاملOn Sequences of Numbers and Polynomials Defined by Linear Recurrence Relations of Order 2
Here we present a new method to construct the explicit formula of a sequence of numbers and polynomials generated by a linear recurrence relation of order 2. The applications of the method to the Fibonacci and Lucas numbers, Chebyshev polynomials, the generalized Gegenbauer-Humbert polynomials are also discussed. The derived idea provides a general method to construct identities of number or po...
متن کامل